

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

`

A data-logging system
Robert R. Fenichel

Table of Contents

1 overview ... 4

1.1 some choices made ... 4

1.1.1 desktop infrastructure .. 4

1.1.2 XBees .. 4

1.1.3 sensor support ... 4

1.1.4 Teensy pins .. 4

1.2 peripheral stations ... 5

1.3 annunciators ... 5

1.4 Carport Station .. 6

1.5 Base Station .. 6

1.6 Desktop Program .. 6

2 sensors .. 7

2.1 AC voltage .. 7

2.2 airborne particulates ... 7

2.3 alternating current ... 7

2.4 air pressure ... 7

2.5 cameras ... 7

2.6 CO2 level .. 8

2.7 DC voltage ... 8

2.8 depth ... 8

2.9 light ... 8

2.10 rainfall ... 8

2.11 temperature, relative humidity, and dewpoint .. 8

2.12 wind direction .. 9

2.13 wind speed ... 9

3 effectors .. 9

3.1 relays .. 9

3.2 string of RGB LEDs .. 9

3.3 electroluminescent wire ... 10

4 signal conditioning .. 10

4.1 debouncing ... 10

1.1 Page 2 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5 peripheral stations ... 11

5.1 hardware ... 11

5.1.1 PCB ... 11

5.1.2 connectors for off-board components .. 12

5.2 Software .. 13

5.2.1 the X_config.txt file ... 13

5.2.2 XBee support ... 15

5.2.3 data handling .. 15

5.2.4 sensor drivers ... 19

5.2.5 relay control ... 22

6 Carport Station .. 24

7 Annunciator ... 24

8 Base Station ... 25

8.1 Hardware .. 25

8.2 Software .. 26

8.2.1 messages to and from the Desktop Program ... 26

8.2.2 data from the peripheral stations .. 28

9 Desktop Program ... 29

9.1 database .. 29

9.1.1 non-contributory data .. 30

9.2 input processing .. 31

9.2.1 Dashboard .. 31

9.2.2 Log ... 33

9.3 the Sensor Manager .. 34

9.4 the Board Manager ... 35

9.5 relay control ... 35

9.6 VC0706 images ... 36

9.7 sensor displays ... 37

9.7.1 the annunciators module ... 38

9.8 Summary .. 39

9.9 Extremes .. 40

9.10 Graphing .. 40

9.10.1 pre-defined graphs ... 41

9.10.2 user-defined graphs .. 43

9.11 miscellaneous ... 47

9.11.1 furnace/AC filter .. 47

9.11.2 Notes .. 47

1.1 Page 3 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9.11.3 printer selection .. 47

9.11.4 clear warnings .. 47

1.1 Page 4 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

1 overview

I here describe a datalogging system that I developed for myself but that may be of interest to others.

The anticipated data will be of many different kinds, but they will be read at intervals of seconds or
minutes, not milliseconds, with no datum requiring more than a few bytes to record.

The core of the system is a Windows Desktop Program, run intermittently, and a Teensy-based Base
Station, connected to the desktop machine by USB and run continuously. The outer surface of the system
consists of several peripheral stations (now seven), annunciators (now just one), and a special-purpose
Carport Station.

1.1 some choices made

1.1.1 desktop infrastructure

My desktop computer runs Windows 7. Every now and then, defects in Windows 7’s USB
implementation require reboots before one or another attached device (such as a Teensy) can be recognized.
More recent Windows versions are reliably said to have better USB implementations, but their tight Web
dependencies are unacceptable to me.

Similarly, the Desktop Program was developed with Delphi 7, which dates to 2002. More recent
versions of Delphi eliminate a few bugs, but Embarcadero is trying to bring its Delphi and C++ compilers
closer together, mostly by downgrading Delphi.

1.1.2 XBees

I am using my XBee transceivers in hub-and-spoke fashion, although the newest XBees allow
implementation of mesh networks. A mesh network would in principle be more reliable. Switching over
would require replacement of all my old XBP24s, and I haven’t felt any need to do this.

All of the system’s XBee traffic is carried out at 38 400 baud. Once or twice a day, data are garbled (and
detected) when (I think) two devices try to transmit at once. Collisions might be even less frequent if a higher
transmission speed were used, but RF noise might then start to cause trouble. I have not bothered to do
pertinent experiments.

1.1.3 sensor support

Each of the my older peripheral PC boards carries a small relay and various sensor-specific hardware. In
the newer boards, these task-specific components have been exiled to satellite boards, to be deployed and
attached as needed.

1.1.4 Teensy pins

The system was first built with Teensy 3.5 development boards, and later moved to Teensy 4.1s. For
ease of software maintenance and hardware replacement, the Teensy boards have always been socketed onto
my project’s PCBs.

The Teensy boards are almost breadboard-compliant: Most of their pins are in two parallel rows, 0.6″

apart with 0.1″ pin/pin spacing. A few pins are not placed in either of these rows, and I have wavered in my
approach to these off-row pins.

1.2 Page 5 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

In the earlier version of the system, I constructed ad hoc sockets to capture all of the Teensy pins that I
thought I might ever make use of. These nonstandard sockets made the Teensys difficult to remove and
replace without damage.

I briefly toyed with the idea of soldering the Teensys to breakout boards, thereby bringing all the pins of
interest to two clean parallel rows of breadboard-ready pins.

Finally, I recognized that of all the off-row Teensy pins, only one (the VUSB pin) was likely to be useful
to me. The on-row pins could be plugged into a breadboard or into a conventional socket on my PCB, while
a short piece of hookup wire could be soldered to the VUSB hole on the Teensy, with its other end free to be
connected to an off-row breadboard hole or plugged into a screw terminal on my PCB.

1.1.5 annunciator display

Each annunciator uses an Adafruit eInk display.1 These displays have only a limited service life, as
counted in text updates. In hindsight, other displays would have been better.

1.2 peripheral stations2

(Each of my older peripheral boards was built around a Teensy 3.5. Those boards are not described
here.)

Each of the peripheral stations uses the same printed-circuit board design and the same software. Each
peripheral-station PCB carries

• a Teensy 4.1 microprocessor,3 with an intrinsic connector for a µSD memory card;

• connectors and regulators allowing the board to be powered from an unregulated 9-12 VDC
source, from batteries, or from the Teensy’s USB connector;

• a battery-backed DS1307 calendar clock;4

• an XBee radio transceiver;5

• connectors for a variety of sensors and relays.

A peripheral station can be configured (by a file on its µSD card) to operate as a stand-alone datalogger,
collecting data from its sensors, using the DS1307 to timestamp the data, and then storing the timestamped
data on the µSD card. None of the peripheral stations is now being used this way.

As now configured, each of the peripheral stations uses its µSD card only for configuration settings and
images received from attached cameras. Instead of timestamping and saving their sensor data, the peripheral
stations use their XBee transceivers to send the data to the central Base Station.

1.3 annunciators6

Each annunciator is an output-only station. In addition to the (ill-chosen) Adafruit eInk display
mentioned above, each annunciator also includes a Teensy 3.27 and an XBee transceiver.

1 See https://www.adafruit.com/product/4947 (accessed 2021-08-30).
2 See Section 5 for details.
3 See https://www.pjrc.com/store/teensy41.html (accessed 2024-03-12).
4 See https://datasheets.maximintegrated.com/en/ds/DS1307.pdf (accessed 2021-05-25).
5 See https://www.digi.com/xbee (accessed 2021-05-25).
6 See Section 7 for details.
7 See https://www.pjrc.com/store/teensy32.html (accessed 2021-08-30).

1.4 Page 6 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The eInk display does not tolerate being updated more often than every few minutes. Subject to this
restriction, an annunciator can be used to provide near-real-time reports on data relayed from the peripheral
stations by the Base Station. A screen-grab from the one existing annunciator looks like this

Figure 1, annunciator screen

The annunciator circuitry is trivial, and I do not describe it further.

1.4 Carport Station8

The hardware and software of the Carport Station are somewhat similar to those of a peripheral station,
but the Carport Station has special real-time requirements. In this document, most statements about
peripheral stations apply equally to the Carport Station.

1.5 Base Station9

The Base Station, built on another home-designed printed-circuit board, carries

• a Teensy 3.5 microprocessor, with an intrinsic connector for a µSD memory card;

• connectors and regulators allowing the board to be powered from an unregulated 9-12 VDC
source or from the Teensy’s USB connector;

• a battery-backed DS1307 calendar clock; and

• an XBee radio transceiver.

The Base Station is meant to run continuously, with occasional connections to a special-purpose program
running on the desktop computer.

When the Base Station is not connected to the desktop computer, data received from the peripheral
stations are timestamped and stored on the µSD card. When the Base Station is connected to the desktop
computer, data stored on the µSD card are dumped to the desktop computer, after which data newly arriving
at the Base Station are immediately passed through.

1.6 Desktop Program10

The Desktop Program saves the accumulating data in a relational database. Drawing on the database,
the Desktop Program can display snapshots of recent sensor readings, graphs showing the sensor readings as
functions of time, and miscellaneous statistics.

8 See Section 6 for details.
9 See Section 8 for details.
10 See Section 9 for details.

2.1 Page 7 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

2 sensors

2.1 AC voltage

To detect the presence of AC voltage, an adapter board11 built around an MID40012 provides an output
that is high when voltage is absent, low when voltage is present. The value of one of the resistors on the
adapter board is specific to the anticipated AC voltage level.

2.2 airborne particulates

SPS30 particulate sensors13 can be connected to measure the number-density (#/cm3) of PM0.5, PM1.0,
PM2.5, PM4.0, and PM10.0 particles and the mass-density (µg/m3) of PM1.0, PM2.5, PM4.0, and PM10.0 particles in
ambient air. The SPS30 relies on standard UART communication.

2.3 alternating current

To measure the current being drawn by the two primary electrical circuits of my house, an adapter
board14 connects to two clamp-on current transformers and provides two outputs of voltage proportional to
detected current..

2.4 air pressure

A BMP08515 sensor is used to measure the ambient air pressure. The BMP085 also measures
temperature. It relies on a standard I²C interface.

2.5 cameras

VC0706 motion-detector/cameras16 capture activity around the outside of the house.. The VC0706
relies on standard UART communication.

The images produced by a VC0706 are bulky, so even when a peripheral station is transmitting other
acquired data to a base station, it will save VC0706 images locally on its µSD card.

11 See

http://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/peripheral%20station/satellite%20boards/Di

pTrace%20Schematic%20-%201962%20AC%20detect.pdf (accessed 2024-03-15).
12 See https://www.onsemi.com/pdf/datasheet/mid400-d.pdf (accessed 2021-05-25).
13 See https://www.sensirion.com/en/environmental-sensors/particulate-matter-sensors-pm25/ (accessed

2021-05-25).
14 See

https://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/peripheral%20station/satellite%20boards/A

CDC%202 (accessed 2024-03-15).
15 See https://www.sparkfun.com/datasheets/Components/General/BMP085_Flyer_Rev.0.2_March2008.pdf

(accessed 2021-05-25). These sensors are obsolete, but I have used them because I had a few in stock. I have no
experience with the BMP180, but it is said to be pin-for-pin compatible.

16 See https://www.itead.cc/wiki/VC0706_UART_Camera_%EF%BC%88Supports_JPEG%EF%BC%89
(accessed 2021-05-25).

2.6 Page 8 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

2.6 CO2 level

An SCD3017 or SCD4018 sensor can measure temperature, relative humidity, and CO2 levels. Each of
these sensors relies on a standard I²C interface.

2.7 DC voltage

DC voltage is measured using the Teensy’s built-in ADC. This means that the measured voltage must
be limited before arrival to be positive and not more than 3.3 V.

2.8 depth

To measure the depth of a small pond in my back yard, I use a sensor from Milone Technologies.19 The
Milone sensor is a clever pressure-to-resistance transducer, so all the peripheral board needs to do is to
provide a voltage divider.

2.9 light

The photocell20 I use outside varies its resistance from a few hundred ohms up to megohms. A
photocell tends to last only a year or so in this application.

2.10 rainfall

Every time its bucket tips, my rain gauge21 closes a switch for about 100 ms. Mechanical switch
bouncing is minimal, but the cabling to the gauge picks up occasional microseconds-long disturbances that
would sometimes trigger false counting by the peripheral board’s Teensy. Debouncing22 with an oscillator
frequency of 100 Hz or so eliminates these false counts.

2.11 temperature, relative humidity, and dewpoint

I use DHT2223 temperature-humidity sensors to measure temperature and relative humidity; my
software computes a dew point whenever a temperature and a relative humidity are available.

The DHT22 requires only 3 wires for its interface, but it comes in a package with 4 spaced leads. On
each peripheral board, a 4-conductor connector allows a DHT22 to be connected directly to the station with
no cabling.

One of my DHT22s, potted in about 100 ml of silicone sealant,24 is used to measure the temperature of
the back-yard pond. It functions well in this environment; its response time is sluggish, but the water
temperature of the pond changes only slowly anyway.

17See

https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sens
ors_SCD30_Datasheet.pdf and https://www.sparkfun.com/products/15112 (both accessed 2021-09-26).

18 See
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sens
ors_SCD4x_Datasheet.pdf and https://www.adafruit.com/product/5187 (both accessed 2021-09-17).

19 See https://milonetech.com/p/about-etape (accessed 2024-03-09).
20 https://media.digikey.com/pdf/Data%20Sheets/Photonic%20Detetectors%20Inc%20PDFs/PDV-P9203.pdf

(accessed 2021-05-25).
21 See https://www.argentdata.com/catalog/product_info.php?products_id=168 (accessed 2021-05-25).
22 See Section 4.1 below.
23 See https://www.adafruit.com/product/385 (accessed 2021-05-25).
24 See https://www.homedepot.ca/product/mono-silicone-pro-clear-premium-silicone-rubber-kitchen-bath-

plumbing-sealant-290ml/1001001157 (accessed 2021-05-25).

2.12 Page 9 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

After a year or so of use, it is not rare for a DHT22 to lose its humidity sensor. When this happens, at
least in my experience, the temperature sensor is unaffected.

2.12 wind direction

My wind vane25 presents its reading as a resistance between 891Ω and 120K.

2.13 wind speed

My anemometer26 allows wind speed to be measured by closing a switch for about one third of each
revolution of a wind-driven wheel. Mechanical switch bouncing doesn’t seem to occur, but the cabling to the
anemometer picks up occasional microseconds-long disturbances that would sometimes trigger false counting
by the peripheral board’s Teensy. Debouncing27 with an oscillator frequency of 1 kHz or so eliminates these
false counts.

3 effectors

3.1 relays

(Each older peripheral board included a small relay. These relays could switch only low currents, so in
practice they were used to control the coils of off-board larger relays.)

The relays now used are hefty SPDT relays28 that I happened to have around, each mounted on its own
little PCB. These relays require a 12V coil current, so the relay PCB29 needs 12V power.30 The board’s
circuitry allows the relay to be controlled by any of the Teensy’s 3.3V current-limited output pins. Also, a
three-position switch allows the relay to be manually forced on, forced off, or left under control of the
attached peripheral station.

The relay board can be configured so that the switched circuit uses

• the common ground and the switched 5V supply,

• the common ground and the switched 12V supply, or

• an independent circuit (often, mains voltage) not connected to the common ground.

Relays are used to control a recirculating waterfall in the backyard pond, a nightlight in the living room, a
heater in the shop, and the electroluminescent wire in the carport.

3.2 string of RGB LEDs

A string of RGB LEDs is connected to the Carport Station. The color of the string fades from one
color to another in a season-appropriate manner (red/green in December, red/white on Canada Day, and so

25 See https://www.argentdata.com/files/80422_datasheet.pdf (accessed 2021-05-25).
26 See https://www.argentdata.com/files/80422_datasheet.pdf (accessed 2021-05-25).
27 See Section 4.1 below.
28 See

https://media.digikey.com/pdf/Data%20Sheets/Tyco%20Electronics%20P%20B%20PDFs/Potter&Brumfield%20RE
LAYS.pdf (accessed 2024-03-09) for type RKA-5DG-12 .

29 See
https://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/peripheral%20station/satellite%20boards/D
ipTrace%20Schematic%20-%20Potter-Brumfield%20relay%201964.pdf (accessed 2024-03-15).

30 The peripheral boards can run on battery power or from the power provided by a USB connection, but most of
the time their Vin rails are derived from a 5V regulator driven by a 12V source, so 12V power is available here and
there on the peripheral boards, labeled “wall power.”

3.3 Page 10 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

on). The necessary timing of the color fade is not consistent with the structure of the peripheral-station
program, so the Carport Station has its own code.

3.3 electroluminescent wire

A string of electroluminescent wire is also controlled by the Carport Station, illuminated as needed, but
sparingly to preserve the service life of the wire.

4 signal conditioning

(In the earlier version of the system, circuitry on the peripheral PCBs provided various level-shifting,
diode protection, and debouncing. These functions, used only here & there, have been deported to satellite
boards, deployed as needed.)

4.1 debouncing

The Teensy’s change-triggered interrupts can sometimes be triggered by ephemeral noise. Signals that
might carry such noise are conditioned by debouncer boards31 on their way to the Teensy.

Each debouncer board is built around a MC14490 chip.32 The MC14490 generates an oscillator signal,
and then it passes through only signals longer than 4 times the oscillator period. A capacitor external to the
MC14490 determines the frequency of the oscillator, which must be set to optimize selection of the
anticipated signals.

For example, my rain gauge closes a circuit for about 100 ms at a time, so the oscillator on the board
used there is set to about 100 Hz, rejecting pulses shorter than 40 ms or so. My wind gauge can generate a
square wave of up to 50 Hz or so, so the oscillator used there is set to about 1 kHz.

31 See

https://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/peripheral%20station/satellite%20boards/D
ipTrace%20Schematic%20-%201959%20quad%20debouncer.pdf (accessed 2024-03-15).

32 See https://www.onsemi.com/pdf/datasheet/mc14490-d.pdf (accessed 2024-03-09).

5.1 Page 11 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5 peripheral stations

5.1 hardware

5.1.1 PCB

Each peripheral-station printed-circuit board looks like this:

Figure 2 peripheral-station PCB

The DipTrace schematic and layout files are on available on my Web site.33

5.1.1.1 Core circuitry

The Teensy CPU is here at 6. If the Teensy’s as-provided Vin/VUSB connection has been severed, a

wire from the Teensy’s off-row VUSB pin can be plugged into the rightmost pin at 30 (“spares”) to restore

the connection. The µSD card of the Teensy is formatted as a FAT32 volume.

A 4-line TeensyView display unit is at 11.

The DS1307 clock is connected at 5; using controls on its Dashboard,34 the Desktop Program can set
all of the peripheral DS1307s. These clocks are maintained on local time, so they need to be set forward and
backward as Daylight Savings Time comes and goes.

The odd blank shape at 35, black in this image, is white in the actual PCBs. The shape is handy for

board-specific handwritten annotations.

An XBee breakout board is attached at 7. The XBees in my system are old XBP24s and a few newer

XBee3s.35 I use Digi’s XCTU utility36 to configure the XBees. The peripheral-station XBees and the Base-
Station XBee all have the same net identifier (ID , in XBee lingo), and each of the XBees has a unique unit

33 See https://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/peripheral%20station/

(accessed 2021-05-26).
34 See Section 9.2.1 below.
35 The XBee form factor has not changed, so breakout boards obtained years ago can be used with modern XBee

units. The old XBP24 models are no longer available.
36 See https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/xctu (accessed 2021-05-25).

5.1 Page 12 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

identifier (MY). The XBee node identifiers (NI) are used for inventory purposes, but the datalogger software
does not rely on them.

When the lowermost switch at 15 is on, the peripheral station believes that it is running in the

Teensyduino IDE. This enables a variety of debugging messages to be sent to the IDE for display. The
other switches here can be used in debugging.

The yellow LED at 20 flashes whenever one of the attached sensors has provided data. The blue LED

at 21 is illuminated when there are data waiting in the µSD memory. The green LED at 22 is used for

debugging. The red LED at 23 is illuminated whenever 3V3 power is available.

Pushing the button at 10 signals that the station should be shut down

5.1.1.2 power-related

The three-position switch at 19 selects the board’s power source, from among the barrel connector

(27), a battery (28), and the Teensy’s USB connector. There are test points for ground at 26 and for the

battery voltage (after a diode drop) at 29.

The connector at 30 provides access to ground, +3V3, and +5V. Its rightmost pin is used for a wire
that has been connected to the Teensy’s (off-row) VUSB pin.

5.1.2 connectors for off-board components

5.1.2.1 UARTs

The connectors at 1 (“particulate”) and 32 (“VC0706”) provide access to the Teensy’s UART3 and
UART2 channels, respectively. They could be used for any UART-dependent devices, but I now reserve
them for an SPS30 particulate sensor37 and a VC0706 camera.38 Accordingly, the pins of these connectors are
labeled from the points of view of these attached devices:

• The UART3 RX and TX pins at 1 are labeled TX and RX [sic], because they will be connected to
the SPS30’s TX and RX wires, respectively.

• The UART2 RX and TX pins at 32 are labeled W and GRN, because they will be connected to

the VC0706’s white and green wires, respectively.

5.1.2.2 digital input

The connectors at 2 (“AC det 2”), 3 (“AC det 1”), 8 (“DHT22_ 2”), 12 (“DHT22_ 1”),
31 (“switch 1 (wind)”), and 33 (“switch 2 (rain)”) receive a single digital input each. They could be used for

pushbuttons, latched switches, or any other generators of binary data, but I now reserve them as follows:

• The connectors at 2 and 3 are reserved for use with detectors of AC voltage.39

• The connectors at 8 and 12 are reserved for use with DHT22s.40 The unconnected pin at 8 is a

spacer, allowing a DHT22 to be connected directly to the board without cabling.

37 See Section 2.2 above.
38 See Section 2.52.2 above.
39 See Section 2.12.2 above.
40 See Section 2.112.2 above.

5.2 Page 13 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

• The connectors at 31 and 33 are reserved for my anemometer41 and my rain gauge,42
respectively. As noted with the descriptions of those sensors, these connections pass through
debouncers before getting to the peripheral PCB.

In addition, the pins labelled AD1, AD2, D1, and D2 at 30 (“spares”) could be used for other digital
input.

5.1.2.3 digital output

The connectors at 4 (“relay 2”) and 25 (“relay 1”) provide access to digital output from the Teensy.
The power pins on these connectors facilitate their use with the relays described in Section 3 above.

5.1.2.4 I2C devices

The connectors at 9 (“Wire1”) and 24 (“Wire 2/BMP085”) provide access to the Teensy’s Wire1 and
Wire2 I2C channels, respectively. These connectors are reserved for a CO2 sensor43 and a BMP085,44

respectively; the spacing at 24 allows a BMP085 to be connected to the PCB without cabling.

5.1.2.5 analog input

The connectors at 13 (“volt 1”) and 17 (“volt 2”) allow analog input to the Teensy. The pins labelled

AD1 and AD2 at 30 could be used for other analog input.

If the jumper at 14 is installed, then the voltage read at 13 will be a fraction (nominally one tenth) of the

voltage (less one diode drop) of the battery connected at 28.

5.1.2.6 resistance

Each of the connectors at 16 (“wind dir/res 2”), 18 (“resistance 3”), and 34 (“light/res 1”) allows an

unknown resistance (?) to be connected as the lower limb of a voltage divider, with the upper limb
connected as R. These three connectors are now used for my wind vane,45 depth gauge,46 and photocells,47
respectively, but they could be used for any analogous sensors.

5.2 Software

The software of the peripheral stations is about 9000 lines of C++.

5.2.1 the X_config.txt file

Every peripheral station, freestanding as a datalogger or connecting to a base station, sensor-heavy or
sensor-light, runs the same program. Different peripheral stations behave differently because of different
configuration information, made available in a text file on the µSD card called X_config.txt .

41 See Section 2.132.2 above.
42 See Section 2.102.2 above.
43 See Section 2.62.2 above.
44 See Section 2.42.2 above.
45 See Section 2.12 above.
46 See Section 2.8 above.
47 See Section 2.9 above.

5.2 Page 14 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The X_config.txt file is an unordered sequence of lines, although lines are conventionally grouped

by function. Blank lines are ignored, as are lines (or portions of lines) preceded by // (two forward slashes).

Each non-comment line of the file is of the form

<category>. <name> = <value>

where any number of blanks may precede and/or follow the equals sign. For example, the lines

Analog.NBits = 12 // 8, 10, 12, or 13
Board.LoggingToUSD = 0
Board.SendingToBase = 1
Board.msBlinkLength = 200

tell the board

• to use 12 bits in the Teensy ADCs;

• that received data should be sent to the base station and not saved to the µSD card; and

• that when data are received from a sensor, the signaling LED at 20 should stay on for 200 ms.

The values thus assigned can be integers, fixed-point numbers, floating-point numbers, or quoted
strings. Boolean values are indicated with 0 (false) and 1 (true). Many of the values needed are times,
expressed in milliseconds or microseconds, so suffixes are recognized to make large numbers less unwieldy.
For example, the relay connected to one of my peripheral stations is configured with

// ----waterfall

relay_1.usNominalReadInterval = 15sK
relay_1.msNominalReportInterval = 5m
relay_1.FollowSwitch = 0
relay_1.Cycler = 1
relay_1.Thermostat = 0
relay_1.msMinimumHold = 1m
relay_1.OnTime = 0800
relay_1.OffTime = 2200
relay_1.Singleton = 0

Here, the s suffix and K suffix are each factors of 1000, so that the relay’s status is read every
15 000 000 microseconds, or (more intelligibly) every 15 seconds. The m suffix = 60s ; an h suffix (not
shown) = 60m.

5.2 Page 15 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The peripheral-station program creates a driver module for every possible sensor, so an important
function of X_config.txt is to specify which drivers should actually be run. The pertinent section of
one of my X_config.txt files is

// ********* sensors ******************

ACDetect_1.InUse = 0
ACDetect_2.InUse = 0
BMP085.InUse = 1
DHT22_1.InUse = 1 // pond
DHT22_2.InUse = 1 // outside temp & RH
relay_1.InUse = 1 // waterfall
resistance_1.InUse = 1 // photocell
resistance_2.InUse = 0
resistance_3.InUse = 0
SPS30.InUse = 0
switch_1.InUse = 0
switch_2.InUse = 0
VC0706.InUse = 0
voltage_1.InUse = 1 // current transfo rmer L
voltage_2.InUse = 1 // current transfo rmer R

5.2.2 XBee support

The main job of the peripheral station’s XBee transceiver is transmission of data to the Base Station.
For this purpose, a line like

XBee.BaseID = 200 // (0xC8)

is used to tell the peripheral station the unit identifier (MY) of the Base Station.48

The peripheral station also listens for XBee input from the Desktop Program, passed on by the Base
Station. For example, the station listens for a message giving it a new setting for its DS1307 clock. If the
Desktop Program has sent a message intended for an inactive component (for example, if the message is
directed to the relay of a peripheral station that has no relay), then the message is simply discarded by the
XBee support code.49

5.2.3 data handling

If a peripheral station were always to be used as a freestanding datalogger, and if it carried only a single
sensor (say, a thermometer), then it could use its µSD card to record data in a dense binary encoding, keeping
only a few bits of change data for each timestamp and each noted temperature.

The situation is different when a given station can carry multiple sensors, of the same or different types,
with a given sensor possibly supplying a vector of multiple values each time it is read, and when multiple
peripheral stations, not coordinating with each other, are all transmitting data to the Base Station for
timestamping and forwarding (possibly after storage at the Base Station) to the Desktop Program.

Coordination is achieved by arranging that certain files are included at compile time by the peripheral-
station program, the Base-Station program, and the Desktop Program. These files are written so as to be

48 XBees communicate in hexadecimal, but — as shown here — XBee addressing within the datalogging system is

expressed in decimal..
49 For more on the Desktop-to-Base messages, see Sections 8.2.1 and 9.58.2.1 below.

5.2 Page 16 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

usable in C++ (for the peripheral stations and Base Station) and in Delphi (for the Desktop Program). These
files become definitions of enumerations in C++ and matching enumerated types in Delphi.

5.2.3.1 board slots

The text of the BoardSlots.Inc file is

// 0 1 2 3 4
bsBogus, bsACDetect_1, bsACDetect_2, bsBMP085, bsDe pth,
bsDHT22_1, bsDHT22_2, bsLightningNOTUSED, bsRelay_1 ,
bsResistance_1, bsResistance_2, bsResistance_3NOTUS ED, bsSPS30,
bsSwitch_1, bsSwitch_2, bsVC0706, bsVoltage_1, bsVo ltage_2,
bsRelay_2, bsRelay_3, bsSwitch_3, bsSwitch_4, bsWir e_1,
bsVoltage_3

In other words, it has one entry for each of the potential sensor (or relay) connections to the peripheral
board. If different or expanded peripheral boards were added to the system, additional entries would be
made in this file. Some codes are not used, but they are preserved for backwards compatibility.

5.2.3.2 WhatMeasured

The text of the WhatMeasured2.inc file is
// 0 1 2 3 4
wm2Bogus, wm2Undefined, wm2PressureInches, wm2RH, w m2TempF,
wm2DepthInches, wm2LightningDistanceNOTUSED,
wm2LightningDistPerHourNOTUSED, wm2LightningEnergyN OTUSED,
wm2LightningFlashesNOTUSED, wm2LightningNoisePerHou rNOTUSED,
wm2IsNowOn, wm2Resistance, wm2MassPM1, wm2MassPM25, wm2MassPM4,
wm2MassPM10, wm2NumPM05, wm2NumPM1, wm2NumPM25, wm2NumPM4,
wm2NumPM10, wm2PartSize, wm2EventCount, wm2Frequenc y,
wm2FrequencyMax, wm2FrequencyMin, wm2FrequencyRaw, wm2Jammed,
wm2NewEvents, wm2SwitchClosed, wm2TargetF, wm2VC070 6Motion,
wm2VC0706Snap, wm2Voltage, wm2DewpointF, wm2DeviceF ailure,
wm2FailureDatum, wm2RelayAck, wm2VC0706Manual, wm2HumidexF,
wm2CO2ppm, wm2RainMMPerHour, wm2Calibrate, wm2SpeedupChanged

These entries are used to tag recorded data. They mostly correspond many-to-one to specific sensor types,
but the correspondence is imperfect. and some codes are used by the system for administrative purposes not
directly related to sensor data. Some codes (e.g., all of the lightning-related one) remain on the list only for
backward compatibility.

5.2.3.3 triples

The most frequent use of the WhatMeasured2 elements is in encoding individual sensor data. Every
non-discarded sensor datum passes through a stage of being recorded as a triple, of the form

<wm2 index>TAB<mantissa>TAB<negexp>

5.2 Page 17 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

where TAB is the ASCII tab character (\t in C++) the <mantissa> and <negexp> are (possibly signed)

integers, and the datum represented is <mantissa> × 10-<negexp> For example, a temperature reading50 of
65.42°F from a DHT22 or BMP085 might appear as the triple

4\t 6542 \t 2

5.2.3.4 sensor tags

For local purposes of the peripheral station, each sensor is assigned a single-character tag, mnemonic if
possible. The X_config.txt files of all my peripheral stations include the lines

ACDetect_2.SensorTag = 'A'
BMP085.SensorTag = 'B'
SCD40.SensorTag = 'C'
DHT22_2.SensorTag = 'D'
DHT22_1.SensorTag = 'E'
ACDetect_1.SensorTag = 'F'
resistance_1.SensorTag = 'L'
voltage_1.SensorTag = 'P'
voltage_2.SensorTag = 'p'
switch_2.SensorTag = 'R'
SPS30.SensorTag = 'S'
relay_1.SensorTag = 'T'
switch_1.SensorTag = 'W'
resistance_3.SensorTag = 'w'

but different stations could use different sets of tags.

5.2.3.5 board tag

Each peripheral station or annunciator has a unique, single-letter board tag, assigned in
X_config.txt with a line like

Board.Tag = 'S'

5.2.3.6 formatting for storage on the peripheral-station µSD card

The data files on a peripheral station’s µSD card are text files, each named <YYYYMMDD>.txt to
show when it was created. If FileSystem.NewFileNameQDay is set to 1 in X_config.txt , then a
new data file is started on each calendar day. Each line of the file is of the form

<YYYY-MM-DD HH:MM:SS>\t <sensor tag>\t <triple>

so that the temperature reading described in Section 5.2.3.3 above might (if it had been made by the DHT22

connected at 8) appear as

2021-05-07 13:18:43 \t D\t 4\t 6542 \t 2

5.2.3.7 formatting for transmission to the Base Station

A sensor may provide more than one datum with each reading. Also, a sensor driver might accumulate
data for a while before reporting a set of statistics describing these data. A peripheral station sends data to

50 Temperature values throughout the system are handled in Fahrenheit, only because it is then more convenient to

graph temperature and relative humidity on the same scale.

5.2 Page 18 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

the Base Station only after a sensor has indicated that one or more triples are ready to be packaged into a
report. Each report is a single ASCII line of the form

<board tag>\t<board slot>\t <triple 1>\t <triple 2>\t . . . \t <triple N>\t <checksum>

so the data from a single BMP085 reading (slot 3, 29.46 in Hg, 64.6 °F) from the board with tag S might be
transmitted as

S\t 3\t 2\t 2946 \t 2\t 4\t 646 \t 1\t 3604

5.2.3.8 reading & reporting

Some sensors provide noisy data that cannot be usefully interpreted until multiple readings are averaged.
In other cases, the most informative reporting will describe how sensor readings have varied over the recent
past. In the X_config.txt file, usNominalReadInterval and msNominalReportInterval
lines can specify that a given sensor is read at certain intervals, but reported only at different (longer)
intervals.

For example, the X_config.txt lines

resistance_1.Damping = 0.9
resistance_1.usNominalReadInterval = 1mK
resistance_1.msNominalReportInterval = 10m

might be used to specify that a photocell should be read every minute or so, but the data (exponentially
damped as specified) should be reported only every 10 minutes or so.

The “nominal” and “or so” in the previous paragraphs refer to the fact that the actual reading and
reporting intervals are slightly randomized around the specified intervals. The randomization is meant to
reduce the incidence of collisions among separate peripheral stations’ XBee transmissions.

A sensor driver may impose sensor-specific limits (typically, a minimum read interval) to override a
specified read interval. Also, the Desktop Program can send a peripheral board a message directing it to
speed up its reading and reporting by a factor of 10, but still subject to the minimal read intervals just
mentioned.

5.2.3.9 singleton

If the “Singleton” property is true of a sensor, then the sensor driver may cause a single timestamped,
formatted value to be shown on the station’s TeensyView display whenever this sensor reports. In the case
of a sensor that provides multiple data values at each reading, the value displayed is chosen by the sensor
driver. For example, the

DHT22_2.Singleton = 1

line in one of my X_config.txt files causes that station’s TeensyView to become a time-and-temperature
display. The DHT22 driver could have been written so as to facilitate time-and-humidity displays, but it
wasn’t.

5.2.3.10 the tSensor51 class

As part of its initialization, the peripheral-station program constructs a driver for every possible sensor.
Guided by InUse lines in the X_config.txt file, selected drivers are marked as being active. The main

51 My C++ code borrows the Delphi convention of having class names (“object” names in Delphi) begin with t .

5.2 Page 19 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

activity of the central loop of the peripheral-station program is to interrogate each active driver, to see if that
driver is due to interact with its associated sensor.

Each sensor driver is an instance of a class specific to one type of sensor. Thus, there is a
tACDetector class, a tBMP085 class, and so on. More could be added. Each of these classes is a
descendant of the tSensor class.

Most of the methods of the tSensor class are protected, accessible to only tSensor ’s descendants.
tSensor ’s only public methods are loop, ShutSensorDown, and the virtual methods setup and
ReadTheSensor .

The setup method, implemented by each instance of each driver routine, associates the instance with a
name and (usually) a Teensy pin and a board slot. This method is also responsible for organizing hardware
and software initialization, guided by the peripheral station’s X_config.txt file. Most of most setup
methods consists of note-taking that may later be useful for debugging.

 Every active sensor’s loop procedure is called on every circuit of the peripheral station’s central loop.
If a shutdown is in progress,52 then the sensor’s ShutSensorDown method is called; tSensor ’s own
ShutSensorDown method is null. Otherwise, if the sensor is due to be read, then loop calls the sensor’s
ReadTheSensor method.

5.2.4 sensor drivers

5.2.4.1 AC Detection

The MID 400 chips used for AC detection send analog output to the Teensy, higher when AC voltage is
absent, lower when it is present. The analog levels are usually close to one rail or the other, so the value in an
X_config.txt line like

ACDetect_1.ACPresentIfBelow = 0.5 // volts

is not critical. Reports from this driver use the wm2IsNowOn tag.

5.2.4.2 BMP085

Most of the BMP085 driver is code copied from a Teensy forum.53 Reports from this driver use the
wm2TempF and wm2PressureInches tags. The temperature reported by a BMP085 may be used to
control a local or remote relay,54 and the reported pressure may be used by a local or remote CO2 sensor.55

5.2.4.3 DHT22

Most of the work of the DHT22 driver is done by the Teensy’s DHT library routine. The values read
from the sensor are accumulated between reports with exponential damping. The temperature reported by a
DHT22 may be used to control a local or remote relay.56 Reports from this driver use the wm2TempF and
wm2RH tags.

52 See Section 5.1.1.1 above.
53 See https://forum.pjrc.com/threads/17143-I2C-barometer-BMP085?highlight=bmp085 (accessed 2021-05-25).
54 See Section 5.2.5.3 below.
55 See Section 2.6 above.
56 See Section 5.2.5.3 below.

5.2 Page 20 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5.2.4.4 resistance

This sensor driver estimates an external resistance by using it as the lower arm of a voltage divider. The
upper arm of the divider is a known external resistor whose value is recorded in an UpperOhms line in
X_config.txt. Accumulated results are exponentially damped before being reported with a
wm2Resistance tag.

On top of that simple pattern, two special cases are recognized. If the Light parameter is set to 1 in
X_config.txt, then the resistance being measured is assumed to be that of a photocell. The
“resistance” reported will then be transformed into a value in [0, 100], using the X_config.txt
parameters Light000 and Light100 . A light level may be used in control of a relay.

If the WindDirection parameter is true, then the “resistance” reported will be a value in [0, 360).
To compute this value, the driver makes use of specifications provided in the wind vane’s data sheet,57 which
describes the (highly nonmonotonic) relation between the vane’s direction and the resistance of the
connection.

To perform the damping that combines several readings of wind direction before reporting, the scalar

direction is converted to a (Wcos θ, Wsin θ) vector, where W is the most recent measured wind speed (or 1, if
no recent wind speed is available). . The vector is converted back to a directional scalar before the report is
made.

5.2.4.5 SCD30, SCD40

These drivers try to provide their sensors’ firmware with the current air pressure, but they use a default
value (29.72 in Hg) if no current value is available. The temperature reported by one of these sensors may be
used to control a local or remote relay.58

The SCD30/SCD40 data are reported with the wm2CO2ppm, wm2RH, and wm2TempF tags.

5.2.4.6 SPS30

The SPS30 device has an internal fan that can be activated at intervals to clean the device’s innards. The
SPS30 driver depends on X_config.txt parameters (AutoCleanDisabled,
AutoCleanIntervalHours, AutoCleanImmediately) to organize the scheduling of these
sanitation events.

The SPS30 data are reported with the wm2MassPM1, wm2MassPM25, wm2MassPM4,
wm2MassPM10, wm2NumPM05, wm2NumPM1, wm2NumPM25, wm2NumPM4, wm2NumPM10,
and wm2PartSize tags.

5.2.4.7 switch closure

Switch closure sounds simple, but this driver is in fact the most complex of the current sensor drivers.
This is because the behavior of a switch can be reported

• as open or closed whenever reporting is due, or

• whenever the state has changed, or

• by counting closures (for example, bucket tips of a rain gauge), or

• by observing the closure frequency (for example, the frequency of a spinning-cup anemometer).

57 See https://www.argentdata.com/files/80422_datasheet.pdf (accessed 2021-05-25).
58 See Section 5.2.5.3 below.

5.2 Page 21 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5.2.4.7.1 state monitor (LogState = 1)

When the LogState parameter is true, then the station uses the wm2SwitchClosed tag to report
the switch being closed (1) or open (0). The reporting interval should in this case be identical to the reading
interval.59

5.2.4.7.2 change logger (LogChange = 1)

When the LogChange parameter is true, then the station uses the wm2SwitchClosed tag. It
reports at the specified reporting interval, but it also reports whenever the switch is read if the switch’s state
has changed since the last report.

5.2.4.7.3 event counter (EventCounter = 1)

When the EventCounter parameter is true, then the driver takes account of the X_config.txt
parameters JammedLowDefined, usJammedLowThreshhold, ReportNew Events,
ReportCumulativeEvents, ReportEveryNEvents, and ReportEventsByTime.

If

• the JammedLowDefined parameter is true,

• the switch has remains closed for more than usJammedLowThreshhold microseconds,
and

• the apparent jam has not yet been reported

then the driver reports the value of wm2Jammed to be true.

If ReportCumulativeEvents is true, then the total event count will be reported, using the
wm2EventCount tag. If ReportNewEvents is true, then the count of events since the last report will
be reported, using the wm2NewEvents tag.

When the ReportEventsByTime parameter is true, then a report is made whenever the report
interval has elapsed. When the value of the ReportEveryNEvents parameter is non-zero, then a report
is made whenever that many events have occurred since the last report.

5.2.4.7.4 frequency counter (FrequencyCounter = 1)

When the FrequencyCounter parameter is true, then the driver takes account of the
X_config.txt parameters MaxPlausibleHz and WindSpeed. If WindSpeed is true, then
the driver looks also at WindMPHPerHz, and all of the “frequencies” reported are actually the products of
the measured frequency and the value of WindMPHPerHz.

When it’s time to report, the driver reports

• the exponentially-damped accumulated readings, using the wm2Frequency tag;

• the lowest frequency reported in any reading since the last report, using the
wm2FrequencyMin tag;

• the highest frequency reported in any reading since the last report, using the
wm2FrequencyMax tag; and

• if WindSpeed is true, the most recent frequency read, using the wm2FrequencyRaw tag.

59 I might change this to behave as at present when the reading and reporting intervals are identical, but to report

the duty cycle (that is, fraction of time closed) when the reporting interval is longer.

5.2 Page 22 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5.2.4.8 voltage

The voltage-sensor driver uses only the wm2Voltage tag to report its result, but it may, depending on
what it finds in X_config.txt, transform the incoming data before reporting.

If BatteryTest is true, then the driver assumes that the shunt at 14 is in place, and that the voltage

delivered at 13 is a divided version of the voltage (after a diode drop) of the battery at 28. Components on

the peripheral-station board are chosen so that the divider has a ratio of about 0.1, but the actual ratio should
be measured and then supplied in a line like

Board.BatteryDivider = 0.0824

In order to allow decentralized compensation for external, component-dependent voltage adjustment,

the voltage finally reported by the driver is (estimated voltage) × MultiplyBy + ThenAdd.

5.2.4.9 VC0706 camera

Most of the work of this driver is done by the driver provided in the AdaFruit library.

The VC0706 camera will record 160×120 images unless one of the 640x480 or 320x240 parameters

is true. Either of the larger images takes about 19 seconds to store; the 160×120 image takes about 5 seconds.
If MotionDetect is true, then the camera will take and store an image whenever motion is detected.
Otherwise, the camera will take and store an image whenever a reporting interval has passed.

Image files stored on the µSD card are named JPEG0000.JPG, JPEG0001.JPG , and so on.
Whenever an image is stored, the driver reports its file number, using one of the tags wm2VC0706Motion
and wm2VC0706Snap.

As described in Section 9.6 below, it’s also possible to direct the taking of a VC0706 image from the
Desktop Program.

5.2.5 relay control

The relay on a peripheral board can be controlled directly by commands from the Desktop Program.
Also, the peripheral station can control the relay autonomously, as specified in the X_config.txt file.

When the relay is configured by X_config.txt, exactly one of FollowSwitch, Cycler ,
Thermostat, and Worklight should be true. The msMinimumHold parameter specifies the
minimum time between state changes.

5.2.5.1 following a switch

If FollowSwitch is true, then the relay is activated whenever the switch specified by
SwitchToFollow is closed (that is, whenever an indicated Teensy pin is grounded). The recognized
values of SwitchToFollow are

SwitchToFollow
Teensy

pin location identifier
1 3 31 switch_1

2 9 33 switch_2

3 36 30 spares/D1

4 37 30 spares/D2

5.2 Page 23 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5.2.5.2 daily cycle

If Cycler is true, then lines like

relay_1.OnTime = 0700
relay_1.OffTime = 2100

specify the on-time and off-time for daily activation of the relay. An off-time nominally earlier than the on-
time will be correctly interpreted to arrange operation across midnight.

I am using a cycler-mode relay to control the pump that drives a waterfall in a backyard pond. To keep
the pump from being asked to move ice, the relay-supporting code recognizes

relay_1.WhichRecentTemp = 2 // 1, 2 DHT22s; 3 BMP08 5
relay_1.TooColdPossible = 1
relay_1.WarmEnoughF = 40

and refrains from running the pump when the air temperature is below 40°F.

5.2.5.3 thermostat

If Thermostat is true, then the relay will be configured as a thermostat, controlling a heating device.
The thermostat can try to achieve a certain target temperature all day, or — if the OnTime and OffTime
parameters are supplied —only during certain hours. In the latter case, the thermostat will attempt to
maintain a “fallback” temperature during the off hours. To avoid high-frequency cycling around the target
temperature, the thermostat will observe a hysteresis rule: It will keep the heater on until the temperature is a
certain amount above the target temperature, then not turn it on again until the temperature is the same
amount below the target temperature.

The target temperature, fallback temperature, and hysteresis amount are set with the parameters
TargetF, FallbackF , and HysteresisF , respectively.

The temperature followed by the relay/thermostat is determined by the WhichRecentTemp
parameter. The recognized values of WhichRecentTemp are

WhichRecentTem p temperature source
1 DHT22_1 (at 12)

2 DHT22_2 (at 8)

3 BMP085
4 SCD40
5 SCD30

5.2 Page 24 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

5.2.5.4 worklight

If Worklight is true, then the relay will be configured to control a sort of nightlight. That is, it will be
turned on between certain hours when the ambient light level is low. For example, the pertinent lines in my
living-room’s X_config.txt file are

relay_1.Worklight = 1
relay_1.usStandardReadInterval = 15KK
relay_1.msStandardReportInterval = 2m

 relay_1.msMinimumHold = 5m
relay_1.OnTime = 0800
relay_1.OffTime = 2359
relay_1.LightEnough = 36
relay_1.LightHysteresis = 3

6 Carport Station

The Carport Station’s PCB carries three STP16FN06 MOSFETs to drive the string of RGB LEDs, and
a small relay to control the electroluminescent wire. If, in the current spirit of the system, these components
were deported to satellite boards, then the Carport Station could use a standard peripheral board, but it would
still need to have its own program.

The software of the Carport Station (about 1400 lines of C++) is similar to that of the peripheral
stations, but not at the top level. At that level, the Carport Station spends most of its time managing the
string of RGB LEDs, breaking every once in a while

• to make temperature measurements with a DHT22 and

• to control the relay that provides power to the electroluminescent wire. The EL wire is
powered when and only when

o the time is within the EL.OnTime and EL.OffTime bracket set in its
X_config.txt ,

o the light level of its photocell has been below EL.TooMuchLight while the time
was in that bracket today, and

o an enabling message has been sent from the Desktop Program.

The idea here is to enable the EL strip only as needed, and not to have transient carport lights turn the EL
wire off after it has been properly turned on for the evening.

7 annunciators

The annunciator software (about 200 lines of C++) is elementary. It receives text from its XBee, with
each line either

• specifying how many lines of text to anticipate, or

• providing a line of text, along with its intended size and color.

When the main loop of the program sees that

• it has a full set of lines to be displayed, and

• sufficient time (5 minutes) has passed since the last update

it clears the screen and displays the waiting lines.

8.1 Page 25 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

8 Base Station

8.1 Hardware

The current Base Station PCB still uses a Teensy 3.5. It looks like this:

Figure 3 Base-Station PCB

The schematic and the DipTrace schematic and layout files are available on my Web site.60

Many of the components here (XBee at D, TeensyView at E, Teensy 3.5 at F, barrel connector at I,

ground testpoint at N) are the same as those used in the peripheral stations. Testpoints for the +3V3 and

+5V rails are provided at P and Q, respectively, and an ammeter shunt for the +5V supply is provided at K.

The Base Station’s DS1307 clock (here at C) is maintained on Universal Time; the hassle of Daylight
Savings Time is handled in the Desktop Program.

The blue LED at A is lit when data from the peripheral stations are waiting on the Teensy’s µSD card.

The green LED at B is lit when the Base Station has an open connection (through the Teensy’s USB port) to

the Desktop Program. The red LED at G is lit whenever the PCB has power.

The two-position switch at H selects the board’s power source, either the barrel connector at I or the
Teensy’s USB port.

If the switch at J is closed, then the Base Station will initiate an orderly shutdown.

The switch at M is no longer used.

60 See https://www.fenichel.net/pages/Indoor_Activities/electronics/datalogger/base%20station/ (accessed

2021-05-26).

8.2 Page 26 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

8.2 Software

The central loop of the Base-Station software (about 2000 lines of C++) reads as many characters as it
can from the USB port (that is, from the Desktop Program), and then from the XBee (that is, from the
peripheral stations). Whenever a complete message is identified from either source, it is processed.

8.2.1 messages to and from the Desktop Program

Each message from the Desktop Program to the Base Station is a tab-delimited ASCII string; the tokens
are decimal integers. Many of the tokens are indexes into the WindowsToBase enumeration; the text of
the WindowsToBase.inc file is61

wtbEMPTYNOTUSED, wtbConnect, wtbDeleteJPEGs, wtbDis connect,
wtbInitializeuSD, wtbInterrupt, wtbPeripheralReboot NOTUSED,
wtbReadTime, wtbRelayCycle, wtbRelayFollowSwitch, w tbRelayOff,
wtbRelayOn, wtbRelayRunDaily, wtbRelayRunOnceNOTUSE D,
wtbSendToXBee, wtbSetTime, wtbShutDown, wtbStartDum p,
wtbTakeVC0706Image, wtbTargetF, wtbThermostat,
wtbThermostatRelaxNOTUSED, wtbTickleBaseStation, wt bAnnunciator,
wtbBroadcastPressure, wtbBroadcastOutsideTempF,
wtbBroadcastLocalTime, wtbSpeedupChanged, wtbEnable ELWire

Messages from the Base Station to the Desktop Program are also tab-delimited ASCII strings. Some of
these messages simply package up the data provided by the peripheral stations, while others are various status
reports. The text of the BaseToWindows.inc file is

btwUnknown, btwDumpData, btwLiveData, btwDumpEnded,
btwDumpingBlock, btwSavingBuffer, btwAlreadyConnect ed,
btwConnected, btwDisconnectedBS, btwDisconnectedRQ,
btwDumping, btwFileSystemTrouble, btwInterrupted,
btwJustConnected, btwLoopTiming, btwPassThrough,
btwSetupComplete, btwStartingFileSystem, btwTimedOu t,
btwStartingXBee, btwXBeeBufferBusy, btwXBeeCommandI ssued,
btwXBeeDifficultCommandMode, btwXBeeInCommandMode,
btwXBeeMYFailed, btwXBeeNetIDFailed, btwXBeeNIFaile d,
btwXBeeNoCommandMode, btwXBeeNoSetDestination, btwX BeeOK,
btwXBeeSerialNumberFailed, btwXBeeSettingDestinatio n,
btwXBeeStuckInCommandMode, btwFailedTransmission, b twNotDeadYet,
btwNotDuringDumping, btwProcessingRequest, btwReadT ime,
btwDebugging

8.2.1.1 connection-related

The Base Station and the Desktop Program are both continually looking for reassurance that they are
still connected. Every three minutes, the Desktop Program sends a wtbTickleBaseStation message
to the Base Station, expecting a btwNotDeadYet reply. If no such message is received within 5 minutes,
then the Desktop Program concludes that the connection has been broken.

For its part, the Base Station will decide that the connection has been broken after 10 minutes of silence
from the Desktop Program. When this happens, the Base Station will send a btwTimedOut message on
the off chance that it will get through.

61 Some items are obsolete, retained only for backward compatibility.

8.2 Page 27 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

When the Desktop Program believes that it has established a USB connection to the Base Station, it
introduces itself with a wtbConnect message. The Base Station might answer with
btwAlreadyConnected (suggesting that the Desktop Program is confused), but more often it will say
btwConnected and then btwJustConnected.

When the Desktop Program wishes to break the connection, it sends a wtbDisconnect message;
before actually closing the connection, the Base Station answers with btwDisconnectedRQ and then
btwDisconnectedBS.

8.2.1.2 Base Station boot-up messages

The Base Station is expected to run continuously, but not to be continuously connected to the Desktop
Program. The Desktop Program will therefore usually not be available to receive messages generated during
the Base Station’s boot sequence. On the off chance that the Desktop Program is listening, the Base Station
may send various messages during its boot sequence, either reporting successful progress

btwStartingXBee, btwXBeeSettingDestination, btwXBee InCommandMode,
btwXBeeCommandIssued, btwXBeeOK, btwStartingFileSys tem,
btwSetupComplete

or reporting difficulty

btwXBeeBufferBusy, btwXBeeSerialNumberFailed,
btwXBeeDifficultCommandMode, btwXBeeMYFailed, btwXB eeNetIDFailed,
btwXBeeNIFailed, btwXBeeStuckInCommandMode, btwXBee NoCommandMode,
btwFileSystemTrouble, btwXBeeNoSetDestination .

8.2.1.3 directives to the Base Station

The wtbInitializeuSD message directs the Base Station to delete all files on its µSD card.

The Desktop Program can interrupt a lengthy dump of filed data from the Base Station with a
wtbInterrupt message; the Base Station’s reply is btwInterrupted . A wtbShutDown message
directs the Base Station to flush its buffers onto the µSD card; this message was intended to allow the Base
Station to be shut down with no loss of data, but this scenario is not yet supported.

With parameters taken from the desktop’s own reckoning of UTC time, the wtbSetTime message
directs the Base Station to set its DS1307 clock. The complementary wtbReadTime message directs the
Base Station to send back a btwReadTime message whose parameters tell the DS1307’s time.

A wtbStartDump message directs the Base Station to begin dumping the contents of its µSD card.

8.2.1.4 messages passed to specific peripheral stations

As described in Section 9.2 below, a table maintained by the Desktop Program contains the XBee unit
identifier (MY) of each peripheral board. A message to a specific peripheral board is a tab-delimited string
whose components are

wtbSendToXBee <MY> <WTB> <0 or more other parameters>

where <WTB> is one of wtbBroadcastLocalTime, wtbDeleteJPEGs, wtbRelayCycle ,
wtbRelayFollowSwitch, wtbRelayOff, wtbRelayOn, wtbRelayRunDaily,
wtbRelayRunOnce, wtbTargetF, wtbThermostat, wtbTakeVC0706Image, and

8.2 Page 28 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

wtbBroadcastPressure. 62 The other parameters are numerical. If for some reason the Base Station
is unsuccessful in forwarding the message to the specified peripheral station, then the Base Station sends a
btwFailedTransmission message back to the Desktop Program.

8.2.1.5 messages passed to annunciators

The annunciators module of the Desktop Program sends tab-delimited lines like

wtbAnnunciator <MY> <text>

to the Base Station to control the specified annunciator. The <text> is either

• ‘Z’ and a numeral specifying the number of lines to expect, or

• A numeral specifying the text size (in [1 .. 5]), a numeral specifying the color (0 or 1), and the
intended text of the line.

8.2.2 data from the peripheral stations

Just before the Base Station begins to transmit data from its µSD card to the Desktop Program, it sends
a btwDumping message. When it starts passing data through without using the µSD card, it sends
btwPassThrough . When the Base Station receives a line of data from a peripheral station (formatted as
described in Section 5.2.3.7 above), a timestamp is prepended. If the line is to be saved to the µSD card, then
the Base Station sends a btwSavingBuffer message after saving each 512-byte block. When the Base
Station sends the line to the Desktop Program, it is further prepended with btwLiveData if it is being
passed through via a live connection, or with btwDumpData if it is being dumped from the µSD card.

The files on the Base Station’s µSD card are named 1.txt , 2.txt , and so on. Almost all the action is
in 1.txt , but 2.txt is used to hold data that comes in during the dumping of 1.txt , 3.txt is used for
data that comes in during dumping of 2.txt , and so on.63

When the Base Station receives a line of data from a peripheral station, it writes the board tag64 to the
TeensyView. After 30 seconds with no data received, then the Base Station writes a single period to the
TeensyView.

During dumping of µSD data, the Base Station sends a btwDumpingBlock message as it prepares to
send each 512-byte block to the Desktop Program. When all of the µSD data have been transferred to the
Desktop Program, or when dumping has been interrupted,65 the Base Station sends a btwDumpEnded
message.

62 The SCD30 and SCD40 CO2 sensors try to take ambient air pressure into account, but air-pressure

measurement may not be locally available on the peripheral board carrying the CO2 sensor. When an air-pressure
measurement is received by the Desktop Program, the Desktop Program sends a

wtbSendToXBee <MY> wtbBroadcastPressure > <pressure value>
message to each affected peripheral board.

63 I’ve seen 3.txt come into play a few times. I’ve never seen any higher-numbered file used, but it could
happen.

64 See Section 5.2.3.5 above.
65 See Section 8.2.1.3 above.

9.1 Page 29 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9 Desktop Program

The Desktop Program (about 33 000 lines of Delphi) runs in Windows. Its top-level form is small

Figure 4 top-level form, with main menu

and most of its work is done through various other forms that will be described. Closing the main form
closes the application; double-clicking any other form sends focus to the main form.

When the Desktop Program is started, the forms displayed in addition to the main form are the
Dashboard 66 and the panels showing current readings of the various sensors.67 As described in Section
9.10.2 below, some graphs may also be displayed at this time.

When the application is closing, the user is given the option to save into text files various logs that, as
described variously below, are maintained in listboxes during operation of the application.

9.1 database

The center of the Desktop Program is an Advantage relational database.68 Most of the tables of the
database are used for data received from the peripheral stations, but some tables are used for administrative
purposes.

Some kinds of data have been accumulating since mid-2009, so some of the data tables are large
(hundreds of megabytes). The recent data are always of greatest interest, so most data tables are arranged in
triples, with one table for recent data, one for older data, and one for the oldest data (typically data from years
before the year before last year). As of 2024-03-11, for example, the accumulated
temperature/pressure/relative humidity measurements were divided among a 2.7MB table of recent data, a
15MB table of older data, and a 292MB table of data from before 2022. The process of moving data out to
the older-data tables is described later in this section. Except for that process, the fact that some tables are
triplicated is invisible to the user.

An earlier version of the system time-stamped data only with local time, but Daylight Savings Time
made the interface messy. Tabulated data are now stamped with both UTC time (as provided by the Base
Station) and local time (for the user interface).

66 See Section 9.2.1 below.
67 See Section 9.6 below.
68 See https://dbdb.io/db/advantage-database-server (accessed 2021-05-25).

9.1 Page 30 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The data tables currently maintained are

name content
CO2 CO2 levels (ppm)
Light (triplicated) Light outside and in living room
OnOff (triplicated) A/C, furnace, various relays
Pond (triplicated) pond depth and temperature
Power current on each side of house power
Rain (triplicated) rain gauge
SPS30 (triplicated) particulate-related data
Thermostats target temperatures of relay-based thermostats
TRHP (triplicated) air temperature, relative humidity, dew point, pressure
VC0706 file numbers and timestamps
Wind (triplicated) wind speed & direction

The CO2, Power, and Thermostats tables are not triplicated because it is not expected that non-
recent data of these kinds will be of any interest. The VC0706 table is not triplicated because new files on
the Base Station’s µSD card overwrite old ones, and the list of files is therefore of bounded size.

Each record in the CO2, Light, OnOff, SPS30, Thermostats , TRHP, and VC0706

tables has a field to indicate what room or area is the subject of the measurement. No such fields are used in
the other tables, where the target of observation is implicit.

When an air temperature and relative humidity have been provided by a peripheral station, the dewpoint
is calculated for storage in the TRHP table.

9.1.1 non-contributory data

Data for the Light, OnOff, Rain, Thermostats , TRHP, and Wind tables might be
acquired frequently, but the acquired values may be mostly unchanged from reading to reading. For example,
the furnace is unlikely to change state (that is, to turn on or turn off) more than a few times a day. Data are
added to the OnOff table only to begin a calendar day or when the data show a change. In the
implementation, each unique datum in these tables appears twice — once when it first appears and again just
before it is superseded.

Even when the measured data are changing, the changes may be so small that the new data shouldn’t be
stored unless the stored data are becoming sparse. For example, a reported air temperature is stored only if
(a) it is at least 0.3°F different from the previous stored value, or (b) at least 24 minutes has passed since the
previous stored value was reported. The specific parameters here are obtained from the Windows Registry,
where they are tweaked from time to time.

9.2 Page 31 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The Table Manager form, invoked from the main menu with utilities/table manager , allows
data to be removed from a table of recent data, either moved to the paired table of older data or just
discarded. Middle-aged data (“_old”) can also be moved out to the tables of oldest (“_oldest”) data.

Figure 5, table manager

Here and in other forms, fields displayed with purple letters on a green background (here, all of the

fields in the grid) are read-only. The button at C disposes of about 80% of the rows of each current-data

table that has more than the number of rows specified at B.

More radically, if a table is thought to contain bad data, those data can be deleted (I) as specified at G

and H.

9.2 input processing

9.2.1 Dashboard

The initial appearance of the Dashboard is

Figure 6 initial appearance of the Dashboard

9.2 Page 32 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The listbox at K is essentially empty when the application is opened, but it will be filled with a log of

application events. The lines of the listbox can be cleared (H) or saved to a text file (I) in a date-named

folder.

 The checkboxes at E cause the listing at K to be more or less verbose, including (or not)

• lines describing lines sent to annunciators,

• messages sent to or from the Base Station,

• a line for each image captured by a VC0706 camera,

• each data line received from any peripheral station,

• certain complex SQL statements that are dynamically created elsewhere in the application.

Available USB ports are listed at A; here there was only one. Clicking the button at B causes the

application to attempt to make a connection to the USB port selected at A; the progress of establishing the

connection is shown at K and its status is shown at F.

Once a connection has been established, the appearance of the Dashboard changes:

Figure 7 Dashboard after connection to Base Station

The buttons at C and D are enabled, and they tell the Base Station to break off the connection and to shut
down, respectively. When a connection is first established, any data waiting at the Base Station are dumped

to the Desktop Program. The dump can be aborted (but data will be lost) by clicking the button at G.

During each run of the application, a line like the created . . . device . . . lines seen here at K
appears when the application first receives data from a specific sensor. The third-from-last line shown here,
for example, reflects the first appearance (during this run of the application) of data from the DHT22 in the
pond. The devices created are all descendant instances of the tSensorDevice object. Creation of the
instance draws on configuration tables described in Section 9.3 below, so that the instance’s methods can
store the incoming data in the appropriate fields of the appropriate tables.

9.2 Page 33 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

Lines similar to the last line here are generated as data continue to arrive. A dot is displayed for each line
whose data is stored in the database. If the line was determined to be non-contributory,69 then a lower-case
letter is displayed: p for discarded pressure values, w for discarded wind data, and so on.

The second page of the Dashboard is used for control of the DS1307 clocks. They allow the Base
Station’s clock to be read and set, and for the local time to be broadcast as a new setting for all of the
peripheral boards.

The third page of the Dashboard provides tools for sending arbitrary messages to the Base Station.
These facilities have not been used.

The Dashboard form can be closed, and it can later be reopened by selecting dashboard from the
main menu.

9.2.2 Log

The center of the Log form is a listbox H that can record, and lightly decipher, each line of data
received from the Base Station. A typical appearance is

Figure 8 log

Because the boxes at C and D are here both checked, each received line is reported in two forms. Each
of the data lines shown here began with 2, showing that it had been passed through from its originating
peripheral station without pausing on the Base Station’s µSD card. Then, after the Base Station’s timestamp,
there follow the station tag, the board slot tag, the triple(s), and the checksum. The second through fourth

lines here at H decipher the first: The M station tag is that of the master bedroom, slot #6 is the DHT22_2

slot, and 4 and 3 turn out to be wm2TempF and wm2RH, respectively.

The lines of the listbox can be cleared or saved to a text file in a date-named folder via the buttons at A

and B, respectively. Text entered at E can be inserted into H, either extending the current line (F) or as a

new line after the current line (G).

69 See Section 9.1.1 above.

9.3 Page 34 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The tab at I contains another listbox and controls that allow selectivity (by board, area observed, or
sensor type) of the data lines listed.

The Log form can be closed, and it can later be reopened by selecting view/log from the main
menu.

9.3 the Sensor Manager

Clicking sensors/sensor manager on the main menu evokes the Sensor Manager form. At G
on the principal page of this form

Figure 9, Sensor Manager

there is a list of all of my sensors, whether or not they are in use. The grid at H shows how data from the

sensor selected at G are stored in the database. Double-clicking an entry at G allows information about the

selected sensor to be edited: where is it, to what slot (if any) of what board (if any) it is connected, how its
data is to be stored in the database, and so on.

 This figure shows another convention: If a grid’s column header has a bright green background, then
clicking on that header sorts the records of the grid into ascending order by the entries of that column.

The system allows for the submission of user-generated data that are handled like data coming from

sensors. The sensors/bogus sensors item on the main menu (below D in Figure 4 above) provides this
channel. This feature is now used only to log the setting of a little refrigerator whose temperature is followed
by the Carport Station’s DHT22.

9.4 Page 35 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9.4 the Board Manager

Clicking sensors/board manager on the main menu evokes the Board Manager form.

Figure 10, Board Manager

The grid at A lists all of the boards of the system, with additional board-specific information below.

As noted in Section 5.2.3.8 above, a board may be directed to speed up its reading and reporting by a

factor of approximately 10. This feature is controlled by the buttons at D.

As noted in footnote 62 above, the CO2 sensors try to take account of ambient air pressure. When the
Desktop Program receives a pressure reading, it transmits the value to each of the boards here recorded as
needing it.

Because peripheral stations and annunciators are added to the system only rarely, the main table behind
this display (Boards) is maintained by hand, using the Advantage arc32 tool.70

9.5 relay control

Clicking view/relays on the main menu brings up the relays form, which initially looks like this:

Figure 11, relay form, initial state

70 See https://devzone.advantagedatabase.com/dz/content.aspx?Key=20&Release=16&Product=8&Platform=6

(accessed 2021-05-25).

9.6 Page 36 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The peripheral stations that have relays are listed at A, and the possible modes of relay operation are options

in the radiobox at B.

Clicking one of the options at B causes the relays form to expand appropriately, giving the user a
chance to indicate hours of operation and temperature-related options.

• Selection of the manual option causes on and off buttons to become visible, allowing
wtbRelayOn and wtbRelayOff messages to be sent to the peripheral station selected at

A.

• If cycle is selected, then the user is able to specify that the selected relay should be on for
certain hours daily, but only when a specified temperature sensor is reporting temperature above
a specified value. This option is used for the pump that creates the recirculating waterfall in the
back-yard pond.

• If follow switch is selected, then a menu of switches71 will be presented, and the relay will
be set on or off to follow the state of the chosen switch.

• If dumb thermostat is selected, then the user is able to specify a temperature sensor and to
arrange that (with specified hysteresis of temperature) the relay will be on whenever the
temperature is less than a specified value.

• With the thermostat option, the user can arrange that the relay will be on for specified
hours of the day if a specified temperature sensor sees a temperature below a specified value
TargetF, and the relay will be on at other times if the sensor sees a temperature below a different
(generally lower) value FallbackF.

Messages sent to the peripheral station in response to this desktop activity include

wtbTargetF <TargetF> <10 × hysteresis>
 wtbThermostat <FallbackF> <sensor index>

 wtbRelayRunDaily 72 <on time > <off time>
 wtbRelayCycle <minimum temp > <sensor index>
 wtbRelayFollowSwitch <switch index>
 wtbRelayOff
 wtbRelayOn

9.6 VC0706 images

As noted above, the bulky images captured by VC0706 cameras are saved on the peripheral-stations’
µSD cards instead of being transmitted to the Base Station. The base station is notified of each image’s

71 See Section 5.1.2.2 above.
72 Times transmitted in wtbRelayRunDaily messages are transmitted as minutes after midnight. Start and stop

times that span midnight are correctly handled.

9.7 Page 37 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

creation, and the notifications are saved in the VC0706 table. Clicking view/image list on the main
menu brings up this form:

Figure 12, VC0706 image

The grid at C lists all of the peripheral stations that have VC0706 cameras connected to them (here,

there is just one). The button at A directs the selected station to delete the image files on its µSD card; the

button at B directs the station to snap a picture. The grid at D lists all of the images thought to be stored on

the selected station’s µSD card.

9.7 sensor displays

Two passive forms display the latest values of data arriving from the peripheral stations, one for the
outdoor sensors

Figure 13, outdoor sensors

9.7 Page 38 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

and one for the indoor sensors:

Figure 14, indoor sensors

These forms have only limited access to the database, so when the application opens, most of the entries in
these forms are greyed out, and entries become active one by one as data come in.

These forms can be closed, and they can later be reopened through the main-menu items
sensors/outdoor and sensors/indoor .

9.7.1 the annunciators module

The two sensor-display forms provide information to the annunciators module, which in turn organizes
the text lines displayed on the annunciators. The annunciators module contains an enumerated type
that identifies data that might be of interest to an annunciator. The enumerated type now is

tAnnunciatedVar = (avOutsideHumidexF, avOutsideTemp F, avOutsideRH,

 avPM25);

identifying the items shown in Figure 1. The annunciators module defines a partially-abstract
tAnnunciator class, each instance of which is defined by a board tag73 and a set of
tAnnunciatedVar items. Each descendant of the tAnnunciator class is defined to handle a specific
display format for a specific set of items.

The sensor-display forms give special treatment to any datum corresponding to one of the
tAnnunciatedVar items. Each such datum is passed to the annunciators module, where it is
stored. If there is a tAnnunciator instance that has not recently been updated, and whose required data
are all available, then that instance uses multiple calls to the tAnnunciator.SendLine routine to
arrange for transmission of formatted lines to the Base Station and eventually to the instance-associated
annunciator board.

73 See Section 5.2.3.5 above.

9.8 Page 39 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9.8 Summary

Clicking view/summary on the main menu brings up the summary form. At the center of this form,
a grid displays the Summary table, which has one record for every day of recorded data. As of 2024-03-14,
my table contains 5161 records.

Figure 15, summary

The button at B gathers into the Summary table any data in the various data tables that are from days
later than the last date already recorded here. If data have been corrupted, pulled into the Summary table,

and then corrected in the data tables, one can clean up the Summary table by deleting recent records (C and

D) and then re-updating (B).

When a time in the sunrise column is thought to be bad, it can be marked as such by checking the

box at E. Then, as soon as this record is no longer the last one, the implausible sunrise time can be replaced

(button F) by the average of the entries of the previous and following days. The box and button at G and

H perform similarly for entries in the sunset column.

9.9 Page 40 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9.9 Extremes

A form allowing one to explore the extremes of the collected data is available from view/extremes
on the main menu.

Figure 16, extremes

The button at C pulls into the grid at H all of the data selected at A, taken from within the date range

specified at B and sorted appropriately. The rank (F) of a selected date D can be found by clicking on

button E.

9.10 Graphing

The sub-entries under graphs on the main menu provide access to predefined graphs, user-defined
graphs, and a tool (the Graph Manager) for the creation and editing of user-defined graphs. The graphs get
their data from the database, and they are automatically replotted when new pertinent data appear while they
are visible. To avoid thrashing, new data are not allowed to trigger replotting of a given graph more often
than every n seconds, where n is taken from the Windows Registry item

Software\RRF\HomeControl3\DecentGraphInterval

9.10 Page 41 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

9.10.1 pre-defined graphs

The system includes three graphs whose design requires options not available to user-defined graphs.
The “grouped outside” graph (accessed via graphs/outdoor/outside, grouped by date on the
main menu) pulls together various data, notably the photoperiod and temperature range.

Figure 17graph: grouped outside

The button at B brought up a date-range dialogue, and the boxes at C allowed the data displayed to be
limited to the temperature range and sunrise/sunset. In this example, the photoperiod jogged (in local time)
as Daylight Savings Time began, and there was a gap corresponding to a few days in March 2021 when the
system was down.

9.10 Page 42 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

Particulate-related data from the outdoor SPS30 can be part of a user-defined graph, but I threw the
PM2.5 data into the Wind graph (accessed via graphs/outdoor/wind & particulates on the
main menu).

Figure 18, graph: wind

In the Wind graph, some controls have been moved into a menu (A/B/C), and the common date-

range choices (today and last week) at E allow the range-picking dialog to be avoided. Some features
of the Wind graph (the specialized right axis, the ranges) are not available in user-defined graphs.

The outdoor/annualized temperature ranges graph draws on the Summary table to
show how this year’s daily temperature ranges compare to those of previous years:

9.10 Page 43 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

Figure 19, temperature ranges

9.10.2 user-defined graphs

Here is a typical user-defined graph, demonstrating many of the options available:

Figure 20, user-defoned graph

9.10 Page 44 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

After this graph had been defined and named outside , by tools described below, it was accessed by
clicking graphs/outdoor/outside on the main menu. It initially appeared showing data from the
current date, as is the default behavior for all the graphs, but it was redrawn after a date range of interest was

selected through a dialog accessed at B.

Some parts of the user-defined graph system are hard-coded. This sample graph contains line series
(temperature, relative humidity, and pressure) and area series (furnace, A/C, light, and rain74). A point
series (PM2.5) is visible above in Figure 18. Each tWhatMeasured2 75 value is permanently assigned a
series type:

• wm2DepthInches, wm2EventCount 76, wm2IsNowOn, and wm2Resistance 77 are
associated with area series;

• wm2MassPM25 and wm2Voltage are associated with point series; and

• all other measurements are associated with line series.

Also, every user-defined graph has the same menu (A B C D). The format and location of the legend at E
are not under user control, nor is the calibration of the X-axis.

Everything else is user-specified, via the Graph Manager that is accessed via graphs/graph
manager on the main menu.

Figure 21, Graph Manager, first page

74 There wasn’t much rain on those days, but a cyan sliver is visible just above G.
75 See Section 5.2.3.2 above.
76 This association optimizes the graphing of accumulated rain.
77 This association optimizes the graphing of light. The wind-direction data also arrive as resistance measurements,

but they are, as noted in the previous section, handled separately.

9.10 Page 45 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

The first page of the Graph Manager presents (at E) a list of all the possible series. This page can be
used to add a series to an existing graph, but I here demonstrate how it could be used to re-create the graph

shown in Figure 20. The user would start a new graph (F) and go through the desired series, selecting each

from the grid and then adding to the design by clicking G. It would then be time to move on (B) to the
graph-builder page.

Figure 22, Graph Manager, graph builder

The edit box at I provides text that will be used in the graphs section of the main menu, and the

contents of the edit box at J will be used as a caption for the graph on the screen. As soon as there is some

text in each of these boxes, the OK button at N is enabled, and the graph could be saved and displayed.

The resulting display would be unattractive, to say the least.

Figure 23, immature graph

The steps needed to turn this mess into a duplicate of Figure 20 are as follows:

• Enter outside in the edit boxes at I and J.

9.10 Page 46 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

• Set a proper background color, either by choosing from the whole Windows gamut (button F)

or by choosing one of the presets (button G or button H). The choice will appear in E and as

the background color in the plot type column of S.

• Select the outside/pressure series in S, and click button V to change its Y-axis from left
to right.

• Set up the left and right Y-axes, using the radio buttons at L. The choices are 0-100 ,
adaptive (running from just below to just above the observed data range), and
0-adaptive (running from 0 to just above the observed data maximum). Here, the left axis
should be 0-100 and the right axis (for the pressure series) should be adaptive.

• For each series, improve the automatically-generated text in the legend column of S. For
example, change outside_dew point, °F to dew point .

• For each series, change the color with which it will be plotted. The button at U brings one to a

Windows color-choosing dialog; the result is shown in T and as the text color in the

plot type column of S.

• Revise the entries in the plot order column of S. Plot order comes into play when series

overlap, because later-plotted series overwrite the pixels of earlier-plotted ones. In Figure 20,
for example, the big yellow light series was evidently plotted first, since every other series
overwrites it. The dew point and temperature were evidently plotted in that order, because at
times of 100% relative humidity (that is, when dew point = temperature), the dew point line is
hidden behind the temperature line.

• Optionally, enter descriptive text into the memo M.

• Optionally, indicate (box K) that this graph should be shown whenever the application runs.

Those steps would get the form to look like this

Figure 24, Figure 20 rebuilt

9.11 Page 47 of 47

g:\electronics\projects\home control\documentation\hc3\hc3.docx 2024-03-20 11:52

From there, the OK (button N in Figure 22) does the trick.

The third page (C) of the Graph Manager form has a grid listing all of the defined graphs. Double-
clicking on the grid causes the data defining the selected graph to be loaded into the graph-builder page for
editing.

9.11 miscellaneous

9.11.1 furnace/AC filter

If I inform the application whenever I change the filter in my house’s HVAC system
(utilities/reset furnace filter on the main menu), then the application can tell me
(utilities/furnace filter) how many hours of use this filter has had.

9.11.2 Notes

The view/notes item in the main menu gives access to a categorical system of notes

Figure 25, notes

I have used this form for a variety of note-taking, including component monitoring, software to-do lists,
and so on. New categories can be created, and old notes and categories can be deleted as needed.

9.11.3 printer selection

The main-menu utilities/select the printer item lets the user choose the printer that
will be used when the print item is selected on one of the graphs.

9.11.4 clear warnings

A message becomes visible on the main form whenever a VC0706 camera at a peripheral station has
detected motion. If the application thinks that it is connected to the Base Station, but it has not heard from

the Base Station for an unreasonably long time, then the label in the lower right of the main form (H in
Figure 4) is garishly recolored, and the computer beeps. These alerts are suppressed by the
tweaks/clear warnings item on the main menu.

